

Negative E-Beam Resists AR-N 7500

AR-N 7500 e-beam resists for mix & match

High-resolution e-beam resists for the production of integrated circuits

Characterisation

- e-beam, deep UV, i-line, g-line
- intermediate sensitivity
- mix & match-processes between e-beam and UV exposure 310 - 450 nm, positive or negative depending on the exposure wavelength chosen
- high resolution, process-stable (no CAR)
- plasma etching resistant, temp.-stable up to 120 °C
- novolac, naphthoquin. diazide, organic crosslink.a.
- safer solvent PGMEA

Spin curve 1,0 0,8 0.6 04 AP N 7500 18 0,2 AR-N 7500.08 0.0 1000 2000 3000 4000 5000 0 6000 rpm

Structure resolution

AR-N 7500.18 Film thickness 400 nm Lattice with 70 nm lines

Process parameters

Substrate	Si 4" waver
Tempering	85 °C, 90 s, hot plate
Belichtung	ZBA 21, 30 kV
Development	AR 300-47, 4 : 1, 60 s, 22 °C

Properties I					
Parameter / AR-N	7500.18	7500.08			
Solids content (%)	18	8			
Viscosity 25 °C (mPas)	4	2			
Film thickness/4000 rpm (μ m)	0.4	0.1			
Resolution best value (nm)	4	ŀO			
Contrast		5			
Flash point (°C)	42				
Storage 6 month (°C)	4	- 20			

Properties II

Glass trans. temperature (°C)	108	
Dielectric constant	3.1	
Cauchy coefficients	N ₀	1.614
	NI	157.1
	N ₂	0
Plasma etching rates (nm/min)	Ar-sputtering	8
(5 Pa. 240-250 V Bias)	O ₂	170
	CF ₄	40
	80 CF ₄	90
	+ 16 O ₂	

Resist structures

	1000000000				AR-N 7500.18, rows of cylinders with a diameter of
	100	100	100	1000	with a diameter of 500 nm

Process chemicals

Adhesion promoter	AR 300-80
Development	AD 200 4(200 47
Developer	AR 300-46, 300-47
Thinner	AR 300-12
	7117 300-12
Remover	AR 600-71, AR 300-73
	,

Negative E-Beam Resists AR-N 7500

Process conditions

This diagram shows exemplary process steps for AR-N 7500 resists. All specifications are guideline values which have to be adapted to own specific conditions. For further information on processing, @ "Detailed instructions for optimum processing of e-beam resists". For recommendations on waste water treatment and general safety instructions, @ "General product information on Allresist e-beam resists".

Coating		AR-N 7500.18		
		4000 rpm, 60 s, 0.4 µm		
Tempering (± 1 °C)	1111111111111111	85 °C, 1 min hot plate or 85 °C 30 min convection ov	en	
E-beam exposure	124124	ZBA 21, 20 kV		
		Exposure dose (E_0): 180 μ C/	/cm ²	
Development (21-23 °C ± 0,5 °C) put	ddle	AR 300-47, 4 : 1 60 s		
Rinse		DI-H ₂ O, 30 s		
Post-bake (optional)		120 °C, 1 min hot plate or 120 °C, 25 min convection oven for slightly enhanced sensitivity		
Customer-specific technologies		Generation of semiconductor properties		
Removal		AR 300-70 or O ₂ plasma asl	hing	
Developments reco	ommendations		optimal suitable	
Developer	AR 300-26	AR 300-35		
AR-N 7500.18:.08	1:4:1:7	4:1:1:1	4:1	
	,	,		

Processing instructions

These resists are predestined for e-beam exposure, but also suitable for UV exposure. Mix & match processes are possible, if both exposure methods are carefully coordinated. During e-beam exposure, the resist works in a negative mode. If these resists are exposed to UV, they also work in a negative mode if image-wise exposure is performed at 310 to 365 nm, followed by flood exposure at > 365 nm (optimum g-line). The exposure dose is in this case roughly 100 mJ/cm² (i-line) for a film thickness of 400 nm. With an additional tempering step (85 °C, 2 min hot plate) after image-wise exposure, the sensitivity can be slightly increased. A positive image is obtained after image-wise UV exposure at 365 - 450 nm without subsequent flood exposure. The developer dilution should be adjusted with DI water in such a way that the development time is in a range of 30 and 120 s at 21 – 23 °C.

Innovation Creativity Customer-specific solutions

s of Janu 2014 31